

US009326773B2

(12) United States Patent

Casasanta, Jr. et al.

(54) SURGICAL DEVICE INCLUDING BUTTRESS MATERIAL

(75) Inventors: **Thomas Casasanta, Jr.**, Kensington, CT

(US); Andrew Miesse, Durham, CT (US); Sally Carter, Wallingford, CT

(US)

(73) Assignee: Covidien LP, Mansfield, MA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 737 days.

(21) Appl. No.: 13/358,551

(22) Filed: Jan. 26, 2012

(65) Prior Publication Data

US 2013/0193192 A1 Aug. 1, 2013

(51) Int. Cl.

 A61B 17/068
 (2006.01)

 A61B 17/115
 (2006.01)

 A61B 17/072
 (2006.01)

A61B 17/072 (52) U.S. Cl.

CPC A61B 17/115 (2013.01); A61B 17/07292 (2013.01); A61B 17/1155 (2013.01); A61B 2017/07214 (2013.01)

(58) Field of Classification Search

CPC A61B 17/00; A61B 17/04; A61B 17/32; A61B 17/068; A61B 17/072; A61B 17/0684; A61B 2017/07271; A61B 2017/07285; A61B 17/07292; A61B 2017/07278

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

3,054,406 A 9/1962 Usher 3,124,136 A 3/1964 Usher 4,347,847 A 9/1982 Usher

(10) Patent No.:

US 9,326,773 B2

(45) **Date of Patent:**

May 3, 2016

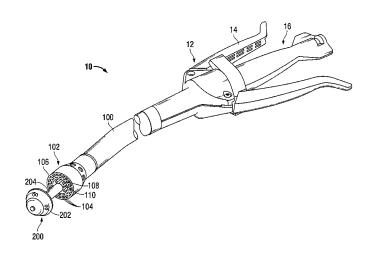
4,354,628 A 10/1982 Green 4,452,245 A 6/1984 Usher 4,605,730 A 8/1986 Shalaby et al. 4,655,221 A 4/1987 Devereux (Continued)

FOREIGN PATENT DOCUMENTS

CA 2 667 434 5/2008 CN 101310680 A 11/2008 (Continued)

OTHER PUBLICATIONS

International Search Report corresponding to European Application No. EP 05 02 2585.3, completed on Jan. 25, 2006 and mailed on Feb. 3, 2006; 4 pages.


(Continued)

Primary Examiner — Gloria R Weeks Assistant Examiner — Justin Citrin

(57) ABSTRACT

The present disclosure provides a surgical stapling device and a method for joining tissue portions. The surgical stapling device includes a handle assembly and a tubular body portion supported on a distal end of the handle assembly having a staple cartridge assembly containing a plurality of surgical staples in an annular array. An anvil assembly is at a distal end of the stapling device and has a shaft for removably connecting the anvil assembly to the tubular body portion. The anvil assembly and tubular body portion are juxtaposed with respect to one another along the shaft and are arranged so as to be approximated with respect to one another. A support member extends from the tubular body portion towards the anvil assembly and a buttress material is supported by the support member and removably attached to the support member.

7 Claims, 8 Drawing Sheets

US 9,326,773 B2 Page 2

(56)			Referen	ces Cited		6,652,594			Francis et al.
		II C I	ATENT	DOCLIMENTS		6,656,193 6,669,735			Grant et al. Pelissier
		U.S. I	PATENT	DOCUMENTS		6,677,258			Carroll et al.
4	,834,090	Α	5/1989	Moore		6,685,714			Rousseau
	,838,884			Dumican et al.		6,702,828			Whayne
4.	,927,640	A	5/1990	Dahlinder et al.		6,704,210		3/2004	
	,930,674		6/1990			6,723,114 6,726,706			Shalaby Dominguez
	,002,551			Linsky et al.		6,736,823			Darois et al.
	,014,899			Presty et al. Green et al.		6,736,854			Vadurro et al.
	,065,929			Schulze et al.		6,746,458		6/2004	
5.	,205,459	A		Brinkerhoff et al.		6,773,458			Brauker et al.
	,263,629			Trumbull et al.		6,896,684 6,927,315			Monassevitch et al. Heinecke et al.
5,	,314,471	A		Brauker et al.	227/170 1	6,939,358			Palacios et al.
	,333,773 ,344,454			Main et al	22//1/9.1	6,946,196		9/2005	
	,392,979			Green et al.		6,959,851	B2		Heinrich
	,397,324			Carroll et al.		7,087,065			Ulmsten et al.
	,425,745			Green et al.		7,108,701			Evens et al. Mooradian et al 606/151
	,441,193			Gravener		7,128,748			Makower et al.
	,441,507 ,443,198		8/1995	Wilk Viola et al.		7,141,055			Abrams et al.
	,468,253			Bezwada et al.		7,147,138		12/2006	Shelton, IV
	,503,638			Cooper et al.		7,160,299		1/2007	Baily
	,542,594			McKean et al.		7,232,449			Sharkawy et al.
	,549,628			Cooper et al.		7,241,300 7,307,031			Sharkawy et al. Carroll et al.
	,575,803 ,653,756			Cooper et al. Clarke et al.		7,311,720			Mueller et al.
	,683,809			Freeman et al.		7,377,928			Zubik et al.
	,690,675			Sawyer et al.		7,434,717	B2		Shelton, IV et al.
5.	,702,409	A	12/1997	Rayburn et al.		7,438,209			Hess et al.
	,752,965			Francis et al.		7,547,312 7,559,937			Bauman et al 606/151 de la Torre et al.
	,762,256 ,766,188		6/1998 6/1998	Mastri et al.		7,571,845		8/2009	
	,769,892			Kingwell		7,594,921			Browning
	,782,396			Mastri et al.		7,604,151			Hess et al.
	,799,857		9/1998	Robertson et al.		7,665,646			Prommersberger
	,810,855			Rayburn et al.		7,666,198 7,669,747			Suyker et al. Weisenburgh, II et al.
	,814,057			Oi et al.		7,717,313			Bettuchi et al.
	,833,695 ,843,096		11/1998	Igaki et al.		7,722,642			Williamson, IV
	,895,412		4/1999			7,744,627			Orban et al 606/215
	,895,415			Chow et al.		7,776,060			Mooradian et al 606/151
	,902,312			Frater et al.		7,793,813 7,799,026			Bettuchi 227/179.1 Schechter et al.
	,908,427			McKean et al. Viola et al.		7,823,592			Bettuchi et al.
	,915,616 ,931,847			Bittner et al.		7,824,420			Eldridge et al.
	,964,774			McKean et al.		7,845,533			Marczyk et al.
5,	,997,895	A		Narotam et al.		7,845,536			Viola et al.
	,019,791		2/2000			7,846,149 7,892,247			Jankowski Conston et al.
	,030,392		2/2000	Dakov Mastri et al.		7,909,224			Prommersberger
	,032,849			McKean et al.		7,909,837		3/2011	Crows et al.
	,063,097			Oi et al.		7,938,307	B2	5/2011	Bettuchi
	,080,169		6/2000			7,942,890			D'Agostino et al.
	,099,551			Gabbay		7,950,561 7,951,166		5/2011	Aranyi
	,149,667			Hovland et al.		7,951,100	B2 B2	6/2011	
	,155,265 ,210,439			Hammerslag Firmin et al.		7,988,027		8/2011	
	,214,020			Mulhauser et al.		8,011,550		9/2011	
6.	,241,139	B1		Milliman et al.		8,016,177			Bettuchi
	,258,107			Balazs et al.		8,016,178 8,028,883		9/2011 10/2011	
	,267,772			Mulhauser et al.		8,062,330			Prommersberger
	,273,897 ,280,453			Dalessandro et al. Kugel et al.		8,083,119			Prommersberger
	,299,631		10/2001			8,123,766		2/2012	Bauman
	,312,457			DiMatteo et al.		8,123,767			Bauman
	,312,474	B1	11/2001	Francis et al.		8,146,791			Bettuchi
	,325,810			Hamilton et al.		8,157,149		4/2012	
	,436,030 ,454,780		8/2002	Rehil Wallace		8,157,151 8,167,895			Ingmanson D'Agostino
	,454,780			Fogarty et al.		8,178,746			Hildeberg et al.
	,503,257			Grant et al.		8,192,460		6/2012	
	,514,283			DiMatteo et al.		8,210,414			Bettuchi
6.	,517,566	B1	2/2003	Hovland et al.		8,225,799	B2	7/2012	Bettuchi
	,551,356			Rousseau		8,225,981			Criscuolo et al.
	,592,597			Grant et al.		8,231,043	B2		Tarinelli
6,	,638,285	B2	10/2003	Gabbay		8,235,273	B 2	8/2012	Oison

US 9,326,773 B2 Page 3

(56)		Referen	ces Cited	2003/0181927			Wallace
	U.S.	PATENT	DOCUMENTS	2003/0183671 2003/0208231			Mooradian et al. Williamson, IV et al.
	0.0.	11112111	DOCOMENTO	2004/0107006			Francis et al.
	5,901 B2		Stopek	2004/0254590 2004/0260315			Hoffman et al.
	6,654 B2	9/2012 9/2012	Bettuchi	2004/0200313			Dell et al. Lahtinen et al.
	7,391 B2 6,800 B2		Bettuchi	2005/0021085		1/2005	Abrams et al.
	6,849 B2		Bettuchi	2005/0059996			Bauman et al.
	8,042 B2	11/2012		2005/0059997 2005/0070929			Bauman et al. Dalessandro et al.
	8,045 B2 8,046 B2		Bettuchi Prommersberger	2005/00/0929			DeLucia et al.
	2,885 B2		Bettuchi	2005/0143756		6/2005	Jankowski
	3,014 B2		Bettuchi	2005/0149073 2006/0004407			Arani et al. Hiles et al.
	8,126 B2 8,130 B2	1/2013 1/2013		2006/0004407			Bettuchi
	5,972 B2		Aranyi et al.	2006/0173470	A1		Oray et al.
8,37	1,491 B2	2/2013	Huitema	2006/0178683			Shimoji et al.
	1,492 B2		Aranyi	2006/0271104 2007/0026031			Viola et al. Bauman et al.
	1,493 B2 3,514 B2	3/2013	Aranyi Shelton, IV	2007/0034669		2/2007	de la Torre et al.
	8,440 B2	4/2013		2007/0049953			Shimoji et al.
	3,869 B2		Heinrich	2007/0123839 2007/0179528			Rousseau et al. Soltz et al.
	3,871 B2 4,742 B2		Racenet Bettuchi	2007/0203509			Bettuchi
	3,652 B2		Stopek	2007/0203510			Bettuchi
	3,904 B2		Eskaros	2007/0243227 2007/0246505		10/2007	Gertner Pace-Floridia et al.
	3,909 B2 3,910 B2	6/2013	Olson Bettuchi	2008/0029570			Shelton et al.
	4,925 B2		Hull et al.	2008/0082126			Murray et al.
8,47	4,677 B2	7/2013	Woodard, Jr.	2008/0110959			Orban et al.
	9,968 B2		Hodgkinson	2008/0125812 2008/0140115		5/2008 6/2008	Zubik et al. Stopek
	5,414 B2 6,683 B2		Criscuolo et al. Prommersberger	2008/0161831		7/2008	Bauman et al.
	1,533 B2	8/2013		2008/0161832			Bauman et al.
	2,402 B2		Marczyk	2008/0169327 2008/0169328			Shelton et al. Shelton
	9,600 B2 0,131 B2		Woodard, Jr. Swayze	2008/0169328			Shelton et al.
	1,138 B2	10/2013		2008/0169330		7/2008	Shelton et al.
8,55	6,918 B2		Bauman	2008/0169331			Shelton et al. Shelton et al.
	1,873 B2		Ingmanson	2008/0169332 2008/0169333			Shelton et al.
	4,920 B2 0,762 B2	11/2013	Hodgkinson Hess	2008/0200949		8/2008	Hiles
	6,430 B2		Prommersberger	2008/0220047			Sawhney et al.
	1,989 B2		Aranyi	2008/0230583 2008/0290134			Heinrich Bettuchi et al.
	6,674 B2 8,129 B2	3/2014	Schulte et al.	2008/0308608			Prommersberger
	4,250 B2		Bettuchi	2008/0314960			Marczyk et al.
	1,703 B2		Fowler	2009/0001121 2009/0001122			Hess et al. Prommersberger et al.
	7,466 B2 9,737 B2	6/2014 7/2014	Olson Hodgkinson	2009/0001122			Morgan et al.
	0,606 B2		Hodgkinson	2009/0001124		1/2009	Hess et al.
	0,050 B2		Hodgkinson	2009/0001125 2009/0001126			Hess et al. Hess et al.
	0,444 B2 9,344 B2		Hiles et al. Olson et al.	2009/0001128		1/2009	Weisenburgh, II et al.
	7,448 B2		Carter et al.	2009/0001130	A1	1/2009	Hess et al.
	5,243 B2	4/2015	Stopek et al.	2009/0005808			Hess et al.
	0,606 B2 0,608 B2		Aranyi et al. Casasanta, Jr. et al.	2009/0030452 2009/0043334			Bauman et al. Bauman et al.
	0,609 B2		Castasanta, Jr. et al.	2009/0076510		3/2009	Bell et al.
9,01	0,610 B2	4/2015	Hodgkinson	2009/0076528		3/2009	
	0,612 B2		Stevenson et al.	2009/0078739 2009/0095791		3/2009 4/2009	Viola Eskaros et al.
	6,543 B2 6,544 B2		(Prommersberger) Stopek Hodgkinson et al.	2009/0095792		4/2009	
	4,227 B2	6/2015	Shelton, IV et al.	2009/0120994			Murray et al.
	5,944 B2		Hodgkinson et al.	2009/0134200 2009/0206125			Tarinelli et al. Huitema et al.
	4,602 B2 7,665 B2		Gleiman Hodgkinson et al.	2009/0206125			Huitema et al.
9,10	7,667 B2		Hodgkinson	2009/0206139			Hall et al.
9,11	3,873 B2	8/2015	Marczyk et al.	2009/0206141			Huitema et al.
	3,885 B2 3,893 B2		Hodgkinson et al. Sorrentino et al.	2009/0206142 2009/0206143			Huitema et al. Huitema et al.
	1,753 B2	10/2015		2009/0200143			Aranyi
9,16	1,757 B2		Bettuchi	2009/0277944	A9	11/2009	Dalessandro et al.
	28243 A1		Masters	2009/0277947		11/2009	
	91397 A1 55345 A1	7/2002	Chen Weadock	2009/0287230 2010/0012704			D'Agostino et al. Tarinelli Racenet et al.
	33676 A1		Wallace	2010/0012/04			Stopek
	20284 A1		Palacios	2010/0065607			Orban, III et al.

US 9,326,773 B2

Page 4

(56)	Referen	nces Cited		.58742 A1 .66721 A1		Stopek Stevenson
U.S.	PATENT	DOCUMENTS	2014/01	.97224 A1	7/2014	Penna
2010/0072254 A1	3/2010	Aranyi et al.		203061 A1 217147 A1		Hodgkinson Milliman
2010/00/2254 A1 2010/0147921 A1	6/2010	Olson		217148 A1	8/2014	
2010/0147922 A1	6/2010	Olson D'Agostino et al.		239046 A1 239047 A1		Milliman Hodgkinson
2010/0147923 A1 2010/0187286 A1*		Chen et al 227/180.1	2014/02	252062 A1	9/2014	Mozdzierz
2010/0243707 A1	9/2010	Olson et al.		001276 A1 041347 A1		Hodgkinson et al. Hodgkinson
2010/0243708 A1 2010/0243711 A1		Aranyi et al. Olson et al.		97018 A1		Hodgkinson
2010/0249805 A1		Olson et al.		15015 A1	4/2015	Prescott et al.
2010/0264195 A1 2010/0282815 A1		Bettuchi		.22872 A1 .64503 A1		Olson et al. Stevenson et al.
2010/0282813 A1 2010/0331880 A1	12/2010	Bettuchi et al. Stopek	2015/01	.64506 A1	6/2015	Carter et al.
2011/0024476 A1	2/2011	Bettuchi et al.		.64507 A1 .96297 A1		Carter et al.
2011/0024481 A1 2011/0036894 A1		Bettuchi et al. Bettuchi		209033 A1		(Prommersberger) Stopek et al. Hodgkinson
2011/0042442 A1*		Viola et al 227/179.1		209045 A1	7/2015	Hodgkinson et al.
2011/0042443 A1* 2011/0046650 A1		Milliman et al 227/180.1 Bettuchi	2015/02	209048 A1	7/2015	Carter et al.
2011/0040030 A1 2011/0057016 A1		Bettuchi		FOREIGI	N PATE	NT DOCUMENTS
2011/0087279 A1		Shah et al.		TORLIG	17111	IVI DOCOMENTS
2011/0215132 A1 2011/0278346 A1*		Aranyi Hull A61B 17/00491	CN	101332		12/2008
2011/02/03 10 111	11/2011	227/180.1	DE DE	1 99 24 : 199 24 :		11/2000 11/2000
2012/0074199 A1 2012/0080336 A1		Olson Shelton	EP	0 594	148 A1	4/1994
2012/0080336 A1 2012/0083723 A1		Vitaris et al.	EP EP		022 B1 119 A1	4/1995 8/1995
2012/0187179 A1		Gleiman	EP		883 A1	1/2001
2012/0197272 A1 2012/0241499 A1		Oray et al. Baxter	EP		317 A2	11/2002
2012/0273547 A1	11/2012	Hodgkinson et al.	EP EP	1 256 : 1 520	318 525 A1	11/2002 4/2005
2013/0037596 A1 2013/0105548 A1		Bear et al. Hodgkinson	EP	1 621	141 A2	2/2006
2013/0105548 A1 2013/0105553 A1		Racenet	EP EP		570 A1 640 A2	9/2006 3/2007
2013/0112732 A1		Aranyi	EP		804 A2	8/2007
2013/0112733 A1 2013/0146641 A1		Aranyi Shelton	EP	1 825		8/2007
2013/0153633 A1		Casasanta	EP EP	1 929 : 1 994	958 890 A1	6/2008 11/2008
2013/0153634 A1		Carter	EP	2 005	894 A2	12/2008
2013/0153635 A1 2013/0153636 A1		Hodgkinson Shelton	EP EP		895 A2 595 A2	12/2008 12/2008
2013/0153638 A1		Carter	EP		308 A2	3/2009
2013/0153639 A1 2013/0153640 A1		Hodgkinson Hodgkinson	EP	2 090		8/2009
2013/0153641 A1	6/2013	Shelton	EP EP	2 090 . 2 090 .		8/2009 8/2009
2013/0161374 A1 2013/0181031 A1	6/2013 7/2013	Swayze	EP	2 163	211 A2	3/2010
2013/0191031 A1 2013/0193186 A1		Racenet	EP EP		121 A1 787 A1	5/2010 6/2010
2013/0193190 A1		Carter	EP		098 A2	10/2010
2013/0193191 A1 2013/0209659 A1		Stevenson Racenet	EP	2 236		10/2010
2013/0221062 A1	8/2013	Hodgkinson	EP EP		282 A2 276 A2	12/2010 3/2011
2013/0240600 A1 2013/0240601 A1		Bettuchi Bettuchi	EP	2 311	386	4/2011
2013/0240601 A1 2013/0240602 A1		Stopek	EP EP	2 436 : 2 462 :		4/2012 6/2012
2013/0256380 A1		Schmid et al.	EP		431 A1	9/2012
2013/0277411 A1 2013/0306707 A1	10/2013	Hodgkinson Viola	EP	2 517		10/2012
2013/0310873 A1	11/2013	Prommersberger	EP EP	2 586 : 2 604		5/2013 6/2013
2013/0327807 A1 2014/0012317 A1	1/2013	Olson Orban	EP	2 604	197	6/2013
2014/0012317 A1 2014/0021242 A1		Hodgkinson	EP EP	2 620 2 620	105 A1	7/2013 7/2013
2014/0027490 A1		Marczyk	EP	2 630		8/2013
2014/0034704 A1 2014/0048580 A1		Ingmanson Merchant	EP EP	2 644		10/2013
2014/0061280 A1	3/2014	Ingmanson	JP	2000-166	091 A2 933	8/2014 6/2000
2014/0061281 A1 2014/0084042 A1		Hodgkinson Stopek	JP	2002-202	213	7/2002
2014/0097224 A1	4/2014		JP WO	07-124 WO 90/05		5/2007 5/1990
2014/0117066 A1		Aranyi	WO	WO 95/16	221	6/1995
2014/0130330 A1 2014/0131418 A1	5/2014 5/2014	Olson Kostrzewski	WO	WO 96/22		7/1996 1/1997
2014/0131419 A1		Bettuchi	WO WO	WO 97/01: WO 97/13		1/1997 4/1997
2014/0138423 A1		Whitfield	WO	WO 98/17	180 A1	4/1998
2014/0151431 A1 2014/0155916 A1		Hodgkinson Hodgkinson	WO WO	WO 99/45 WO 03/082		9/1999 10/2003
2017/0133710 AI	G/ ZU14	Hodganison	,,,,	11 0 05/002	120 A1	10, 2003

(56)References Cited FOREIGN PATENT DOCUMENTS WO WO 03/088845 10/2003 WO 03/094743 WO 11/2003 WO 03/105698 WO 12/2003 WO WO 03/105698 A2 12/2003 WO 9/2005 WO 2005/079675 WO WO 2006/023578 A2 3/2006 WO WO 2006/044490 A2 4/2006 WO WO 2006/083748 A1 8/2006 WO WO 2007/121579 A1 11/2007 WO WO 2008/057281 A2 5/2008 WO WO 2008/109125 A1 9/2008 WO WO 2010/075298 A2 7/2010 WO WO 2011/143183 A2 11/2011 WO WO 2012/044848 A1 4/2012

OTHER PUBLICATIONS

International Search Report corresponding to European Application No. EP 06 00 4598, completed on Jun. 22, 2006; 2 pages.

International Search Report corresponding to European Application No. EP 06 01 6962.0, completed on Jan. 3, 2007 and mailed on Jan. 11, 2007; 10 pages.

International Search Report corresponding to International Application No. PCT/US05/36740, completed on Feb. 20, 2007 and mailed on Mar. 23, 2007; 8 pages.

International Search Report corresponding to International Application No. PCT/US2007/022713, completed on Apr. 21, 2008 and mailed on May 15, 2008; 1 page.

International Search Report corresponding to International Application No. PCT/US2008/002981, completed on Jun. 9, 2008 and mailed on Jun. 26, 2008; 2 pages.

International Search Report corresponding to European Application No. EP 08 25 1779, completed on Jul. 14, 2008 and mailed on Jul. 23, 2008; 5 pages.

International Search Report corresponding to European Application No. EP 08 25 1989.3, completed on Mar. 11, 2010 and mailed on Mar. 24, 2010; 6 pages.

International Search Report corresponding to European Application No. EP 10 25 0639.1, completed on Jun. 17, 2010 and mailed on Jun. 28, 2010; 7 pages.

International Search Report corresponding to European Application No. EP 10 25 0715.9, completed on Jun. 30, 2010 and mailed on Jul. 20, 2010; 3 pages.

International Search Report corresponding to European Application No. EP 05 80 4382.9, completed on Oct. 5, 2010 and mailed on Oct. 12, 2010; 3 pages.

International Search Report corresponding to European Application No. EP 10 25 1437.9, completed on Nov. 22, 2010 and mailed on Dec. 16, 2010; 3 pages.

International Search Report corresponding to European Application No. EP 09 25 2897.5, completed on Feb. 7, 2011 and mailed on Feb. 15, 2011; 3 pages.

International Search Report corresponding to European Application No. EP 10 25 0642.5, completed on Mar. 25, 2011 and mailed on Apr. 4, 2011; 4 pages.

International Search Report corresponding to European Application No. EP 11 18 8309.6, completed on Dec. 15, 2011 and mailed on Jan. 12, 2012; 3 pages.

Extended European Search Report corresponding to EP 13 17 7437. 4, completed Sep. 11, 2013 and mailed Sep. 19, 2013; (6 pp). Extended European Search Report corresponding to EP 13 17 7441. 6, completed Sep. 11, 2013 and mailed Sep. 19, 2013; (6 pp). Extended European Search Report corresponding to EP 07 86 1534. 1, completed Sep. 20, 2013 and mailed Sep. 30, 2013; (5 pp). Extended European Search Report corresponding to EP 13 18 3876. 5, completed Oct. 14, 2013 and mailed Oct. 24, 2013; (5 pp). Extended European Search Report corresponding to EP 13 17 1856. 1, completed Oct. 29, 2013 and mailed Nov. 7, 2013; (8 pp). Extended European Search Report corresponding to EP 13 18 0373. 6, completed Oct. 31, 2013 and mailed Nov. 13, 2013; (7 pp).

Extended European Search Report corresponding to EP 13 18 0881. 8, completed Nov. 5, 2013 and mailed Nov. 14, 2013; (6 pp). Extended European Search Report corresponding to EP 13 17 6895. 4, completed Nov. 29, 2013 and mailed Dec. 12, 2013; (5 pp). Extended European Search Report corresponding to EP 13 18 2911. 1, completed Dec. 2, 2013 and mailed Dec. 16, 2013; (8 pp) Extended European Search Report corresponding to EP 10 25 1795. 0, completed Dec. 11, 2013 and mailed Dec. 20, 2013; (6 pp). Extended European Search Report corresponding to EP 13 18 7911. 6, completed Jan. 22, 2014 and mailed Jan. 31, 2014; (8 pp). Extended European Search Report corresponding to EP No. 12 19 1035.0, completed Jan. 11, 2013 and mailed Jan. 18, 2013; 7 pages. Extended European Search Report corresponding to EP No. 12 18 6175.1, completed Jan. 15, 2013 and mailed Jan. 23, 2013; 7 pages. Extended European Search Report corresponding to EP No. 12 19 1114.3, completed Jan. 23, 2013 and mailed Jan. 31, 2013; 10 pages. Extended European Search Report corresponding to EP No. 12 19 2224.9, completed Mar. 14, 2013 and mailed Mar. 26, 2013; 8 pages. Extended European Search Report corresponding to EP No. 12 19 6911.7, completed Apr. 18, 2013 and mailed Apr. 24, 2013; 8 pages. Extended European Search Report corresponding to EP 12 19 8776. 2, completed May 16, 2013, and dated May 27, 2013; 8 pages. International Search Report corresponding to European Application No. EP 12 15 2229.6, completed on Feb. 23, 2012 and mailed on Mar. 1, 2012; 4 pages.

International Search Report corresponding to European Application No. EP 12 15 0511.9, completed on Apr. 16, 2012 and mailed on Apr. 24, 2012; 7 pages.

International Search Report corresponding to European Application No. EP 12 15 2541.4, completed on Apr. 23, 2012 and mailed on May 3, 2012; 10 pages.

International Search Report corresponding to European Application No. EP 12 16 5609.4, completed on Jul. 5, 2012 and mailed on Jul. 13, 2012; 8 pages.

International Search Report corresponding to European Application No. EP 12 15 8861.0, completed on Jul. 17, 2012 and mailed on Jul. 24, 2012; 9 pages.

International Search Report corresponding to European Application No. EP 12 16 5878.5, completed on Jul. 24, 2012 and mailed on Aug. 6, 2012; 8 pages.

Extended European Search Report corresponding to EP 12 19 1035. 0, completed Jan. 11, 2013 and mailed Jan. 18, 2013; 7 pages Extended European Search Report corresponding to EP 12 19 6904. 2, completed Mar. 28, 2013 and mailed Jul. 26, 2013; 8 pages Extended European Search Report corresponding to EP 12 19 8749. 9, completed May 21, 2013 and mailed May 31, 2013; 8 pages Extended European Search Report corresponding to EP 07 00 5842. 5, completed May 13, 2013 and mailed May 29, 2013; 7 pages. Extended European Search Report corresponding to EP 13 15 6297. 7, completed Jun. 4, 2013 and mailed Jun. 13, 2013; 7 pages Extended European Search Report corresponding to EP 13 17 3985. 6, completed Aug. 19, 2013 and mailed Aug. 28, 2013; 6 pages. Extended European Search Report corresponding to EP 13 17 3986. 4, completed Aug. 20, 2013 and mailed Aug. 29, 2013; 7 pages. Extended European Search Report corresponding to EP 08 72 6500. 5, completed Feb. 20, 2014 and mailed Mar. 3, 2014; (7 pp). Extended European Search Report corresponding to EP 13 19 5919. 9, completed Feb. 10, 2014 and mailed Mar. 3, 2014; (7 pp). Extended European Search Report corresponding to EP 13 19 2123. 1, completed Jan. 30, 2014 and mailed Feb. 10, 2014; (8 pp). Extended European Search Report corresponding to EP 13 19 6816. 6, completed Mar. 28, 2014 and mailed Apr. 9, 2014; (9 pp). Extended European Search Report corresponding to EP 13 19 4995. 0, completed Jun. 5, 2014 and mailed Jun. 16, 2014; (5 pp) Extended European Search Report corresponding to EP 13 19 5019. 8, completed Mar. 14, 2014 and mailed Mar. 24, 2014; (7 pp). Extended European Search Report corresponding to EP 13 19 2111. 6, completed Feb. 13, 2014 and mailed Feb. 27, 2014; (10 pp). Extended European Search Report corresponding to EP 13 19 7958. 5, completed Apr. 4, 2014 and mailed Apr. 15, 2014; (8 pp). Extended European Search Report corresponding to EP 14 15 6342. 9, completed Jul. 22, 2014 and mailed Jul. 29, 2014; (8 pp).

(56) References Cited

OTHER PUBLICATIONS

Extended European Search Report corresponding to EP 14 15 7195. 0, completed Jun. 5, 2014 and mailed Jun. 18, 2014; (9 pp). Extended European Search Report corresponding to EP 14 16 9739. 1, completed Aug. 19, 2014 and Aug. 29, 2014; (7 pp). Extended European Search Report corresponding to EP 14 15 7997. 9, completed Sep. 9, 2014 and mailed Sep. 17, 2014; (8 pp). Extended European Search Report corresponding to EP 14 16 8904. 2, completed Sep. 10, 2014 and mailed Sep. 18, 2014; (8 pp). Extended European Search Report corresponding to EP 13 19 4995. 0, completed Jun. 5, 2014 and mailed Oct. 13, 2014; (10 pp). Extended European Search Report corresponding to EP 13 15 4571. 7, completed Oct. 10, 2014 and mailed Oct. 20, 2014; (8 pp). Extended European Search Report corresponding to EP 14 18 1125. 7, completed Oct. 16, 2014 and mailed Oct. 24, 2014; (7 pp). Extended European Search Report corresponding to EP 14 18 1127. 3, completed Oct. 16, 2014 and mailed Nov. 10, 2014; (8 pp). Extended European Search Report corresponding to EP 14 19 0419. 3, completed Mar. 24, 2015 and mailed Mar. 30, 2015; (6 pp). EP Communication corresponding to EP 12 198 776.2 dated Apr. 7, 2015; 6 pages.

European Office Action corresponding to counterpart Int'l Appln No. EP 12 198 776.2 dated Apr. 7, 2015.

European Office Action corresponding to counterpart Int'l Appln No. EP 13 156 297.7 dated Apr. 10, 2015.

Australian Examination Report No. 1 corresponding to counterpart Int'l Appln No. AU 2011250822 dated May 18, 2015.

European Office Action corresponding to counterpart Int'l Appln No. EP 12 186 175.1 dated Jun. 1, 2015.

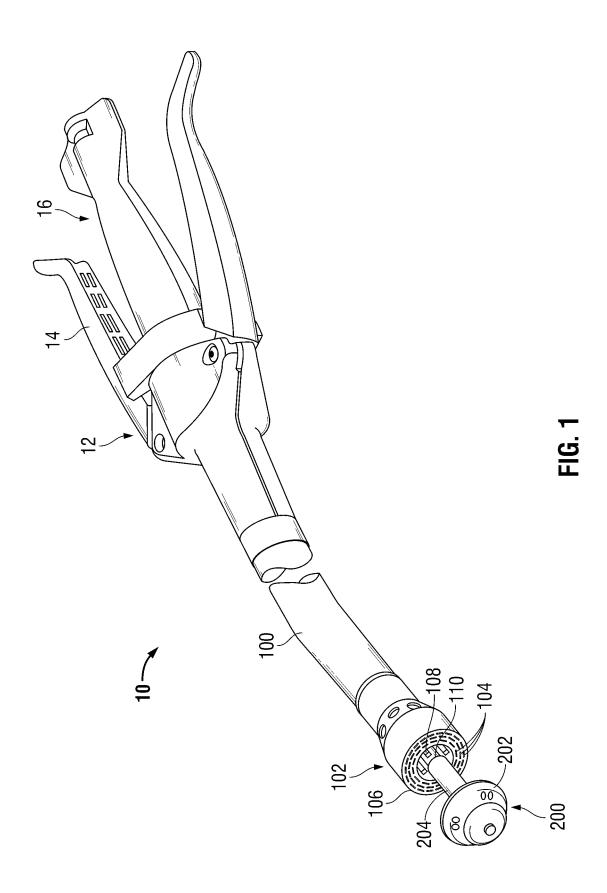
Chinese Office Action corresponding to counterpart Int'l Appln No. CN 201010517292.8 dated Jun. 2, 2015.

Extended European Search Report corresponding to counterpart Int'l Appln No. EP 14 17 4814.5 dated Jun. 9, 2015.

Australian Examination Report No. 1 corresponding to counterpart Int'l Appln No. AU 2014200584 dated Jun. 15, 2015.

European Office Action corresponding to counterpart Int'l Appln No. EP 13 180 881.8 dated Jun. 19, 2015.

European Office Action corresponding to counterpart Int'l Appln No. EP 14 157 195.0 dated Jul. 2, 2015.


Extended European Search Report corresponding to counterpart Int'l Appln No. EP 12 19 6902.6 dated Aug. 6, 2015.

Extended European Search Report corresponding to counterpart Int'l Appln No. EP 14 15 2060.1 dated Aug. 14, 2015.

Chinese Office Action corresponding to counterpart Int'l Appln No. CN 201210129787.2 dated Aug. 24, 2015.

European Office Action corresponding to counterpart Int'l Appln. No. EP 12 19 8776.2 dated Jan. 19, 2016.

^{*} cited by examiner

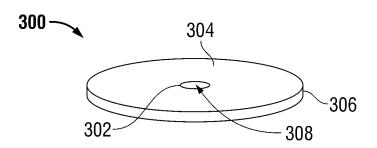


FIG. 2

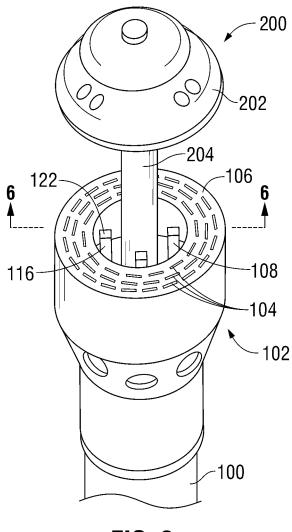


FIG. 3

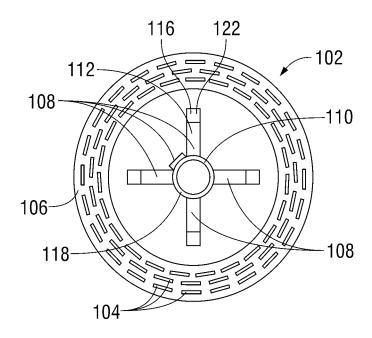


FIG. 4

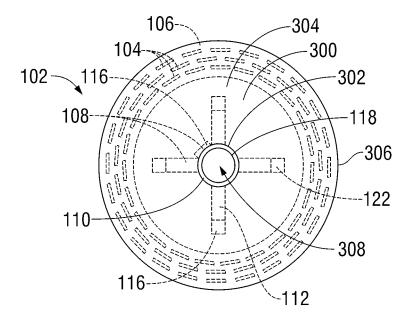


FIG. 5

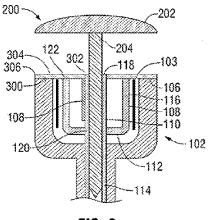


FIG. 6

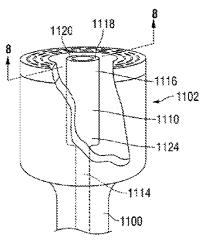
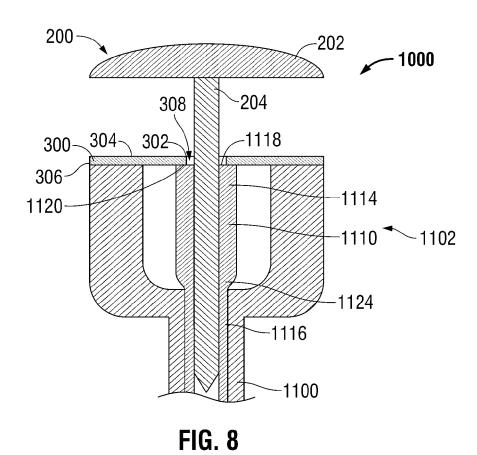



FIG. 7

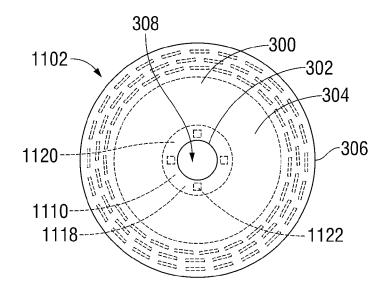


FIG. 9

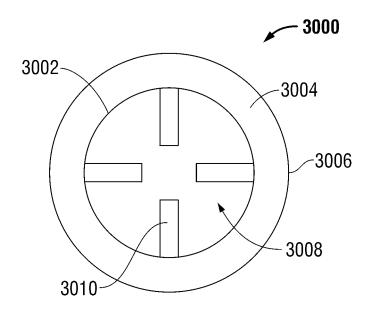


FIG. 10

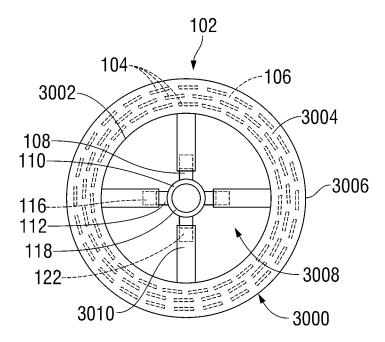


FIG. 11

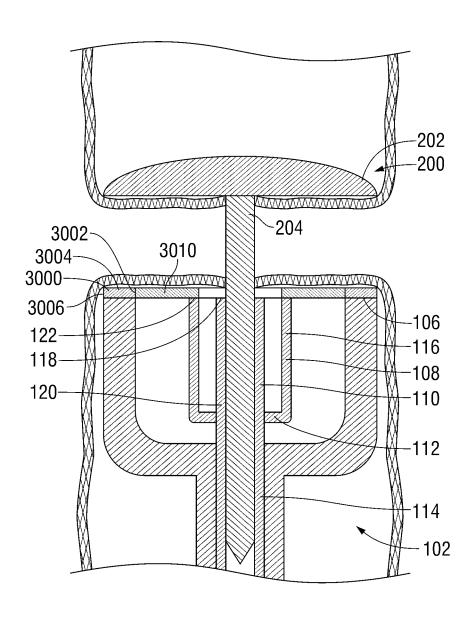


FIG. 12

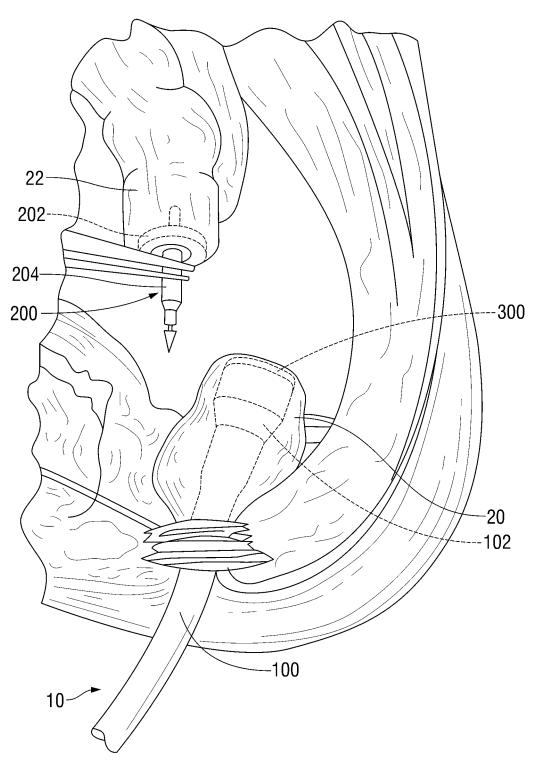


FIG. 13

SURGICAL DEVICE INCLUDING BUTTRESS MATERIAL

BACKGROUND

1. Technical Field

The present disclosure relates to buttress materials for use with a surgical stapling device and, more particularly, to a method and structure for attaching a buttress material to a surgical stapling device for use in anastomosis procedures.

2. Background of Related Art

Staples have traditionally been used to replace suturing when joining or anastomosing various body structures such as, for example, the bowel or bronchus. The surgical stapling devices employed to apply these staples are generally designed to simultaneously cut and seal an extended segment of tissue in a patient, thus vastly reducing the time and risks of such procedures.

Linear or annular surgical stapling devices are employed by surgeons to sequentially or simultaneously apply one or 20 more linear rows of surgical fasteners, e.g., staples or two-part fasteners, to body tissue for the purpose of joining segments of body tissue together and/or for the creation of anastomoses. Linear surgical stapling devices generally include a pair of jaws or finger-like structures between which body tissue to be joined is placed. When the surgical stapling device is actuated and/or "fired", firing bars move longitudinally and contact staple drive members in one of the jaws, and surgical staples are pushed through the body tissue and into/against an anvil in the opposite jaw thereby crimping the staples closed. 30 A knife blade may be provided to cut between the rows/lines of staples. Examples of such surgical stapling devices are described in U.S. Pat. Nos. 4,354,628, 5,014,899 and 5,040, 715, the entirety of each of which is incorporated herein by reference.

Annular surgical stapling devices generally include an annular staple cartridge assembly including a plurality of annular rows of staples, typically two, an anvil assembly operatively associated with the annular cartridge assembly, and an annular blade disposed internal of the rows of staples. 40 Examples of such annular surgical stapling devices are described in U.S. Pat. Nos. 5,799,857 and 5,915,616 to Robertson et al., the entirety of each of which is incorporated herein by reference.

In general, an end-to-end anastomosis stapler typically 45 places an array of staples into the approximated sections of a patient's bowels or other tubular organs. The resulting anastomosis contains an inverted section of bowel which contains numerous "B" shaped staples to maintain a secure connection between the approximated sections of bowel.

For most procedures, the use of bare staples, with the staples in direct contact with the patient's tissue, is generally acceptable. The integrity of the tissue will normally serve to prevent the staples from tearing out of the tissue and compromising the sealing before healing has occurred. However, in 55 some surgical operations, surgical supports, e.g., meshes or buttress materials, are employed by surgeons in combination with linear stapling devices to bridge, repair and/or reinforce tissue defects within a patient, especially those occurring in the abdominal wall, chest wall, diaphragm, and other musculo-aponeurotic areas of the body. Examples of suitable surgical supports are disclosed in U.S. Pat. Nos. 3,054,406, 3,124,136, 4,347,847, 4,655,221, 4,838,884, 5,002,551, and 7,942,890, the entirety of each of which is incorporated herein by reference.

When the staples are applied in surgical procedures utilizing surgical supports (i.e., reinforcing material), the legs of 2

the staple typically pass from the cartridge jaw through a layer of the surgical support, and through the patient's tissue before encountering the anvil jaw.

While the surgical supports described above are used in conjunction with linear surgical stapling devices, the need exists for annular support structures for use in conjunction with annular or circular surgical stapling devices, for example, an end-to-end anastomosis stapler such as a Model "EEATM" instrument available from United States Surgical, a Division of Tyco Health-Care Group, LP, Norwalk, Conn. and disclosed in U.S. Pat. No. 5,392,979 to Green et al.

One possible side effect of any end-to-end bowel anastomosis is its tendency to undergo stenosis, which can decrease the diameter of the lumen over time. Accordingly, the need exists for an annular surgical structure which operates in conjunction with any end-to-end, annular, or circular anastomosis or stapling device and assists in keeping open the lumen of the anastomosed bowel or other tubular organ over time.

A need also exists for an annular support structure which operates in conjunction with any end-to-end, annular or circular stapling device to reduce the trauma suffered by the patient, reduce the instances of leakage, reduce the instances of bleeding, and create a relatively strong bond between adjacent body tissues.

SUMMARY

The present disclosure provides a surgical stapling device having support members for supporting and attaching a buttress material thereto and a method of using the same.

In one embodiment, a surgical stapling device for joining tissue portions is disclosed. The surgical stapling device includes a handle assembly and a tubular body portion supported on a distal end of the handle assembly having a staple cartridge assembly containing a plurality of surgical staples in an annular array. An anvil assembly is at a distal end of the surgical stapling device and has a shaft for removably connecting the anvil assembly to the tubular body portion. The anvil assembly and tubular body portion are juxtaposed with respect to one another along the shaft and are arranged so as to be approximated with respect to one another. A support member extends from the tubular body portion towards the anvil assembly and a buttress material is supported by the support member and removably attached to the support member where the buttress material is disposed between the anvil assembly and the staple cartridge assembly.

In one embodiment the buttress material includes an attachment member which extends from the buttress material to the support member and is attachable to the support member to removably secure the buttress material to the support member. In another embodiment, the tubular body portion includes a plurality of support members and the buttress material is removably attachable to the plurality of support members. In another embodiment, the support member is disposed in an opening extending at least partially through the tubular body portion. In another embodiment, the support member extends distally from the opening in an axial direction where a distal end of the support member is substantially radially aligned with a distal face of the tubular body portion. In another embodiment, the buttress material is positioned proximate to a tissue contacting surface of the staple cartridge assembly when the buttress material is attached to the support member.

In one embodiment the tubular body portion includes an elongate member extending axially therefrom and defining a passage extending at least partially therethrough for reception

of the shaft of the anvil assembly. In another embodiment, the support member is radially disposed between the elongate member and the staple cartridge assembly. In another embodiment, the tubular body portion further includes a knife disposed between the elongate member and the tubular body portion. The knife is actuatable from a first proximal position to a second distal position to sever the tissue portions during firing of the surgical stapling device. In another embodiment, the support member is radially disposed between the elongate member and the knife.

In another embodiment, a surgical stapling device for joining tissue portions is disclosed. The surgical stapling device includes a handle assembly and a tubular body portion supported on a distal end of the handle assembly having a staple cartridge assembly containing a plurality of surgical staples in an annular array. An anvil assembly is at a distal end of the stapling device and has a shaft for removably connecting the anvil assembly to the tubular body portion. The anvil assembly and tubular body portion are juxtaposed with respect to one another along the shaft and are arranged so as to be 20 approximated with respect to one another. An elongate member extends from the tubular body portion towards the anvil assembly and includes an opening extending at least partially therethrough for receiving the shaft of the anvil assembly. A removably attached thereto where the buttress material is disposed between the anvil assembly and the staple cartridge assembly.

In one embodiment, the elongate member defines a substantially circular platform at a distal end thereof and the 30 buttress material is attachable to the circular platform. In another embodiment, the elongate member defines a proximal portion and a distal portion where the distal portion has an outer diameter which is larger than an outer diameter of the proximal portion and the circular platform is disposed on the 35 distal portion. In another embodiment, the inner diameter of the proximal and distal portions are substantially the same. In another embodiment, the buttress material is adhered to a distal end of the elongate member. In another embodiment, a distal end of the elongate member is substantially radially 40 aligned with a distal end of the staple cartridge assembly.

A method of using buttress material with a surgical stapling device is also disclosed. The method including the steps of positioning the buttress material at least partially between an anvil assembly and a cartridge assembly of the surgical sta- 45 pling device and extending from the cartridge assembly to a support member of the surgical stapling device, securing the buttress material to the support member, receiving body tissue between the anvil assembly and the cartridge assembly, grasping the body tissue between the anvil assembly and the 50 cartridge assembly, and firing the surgical stapling device to drive a plurality of staples from the cartridge assembly through the buttress material and the body tissue to thereby secure a first portion of the buttress material to the body

In one embodiment, the step of firing the surgical stapling device includes the step of transitioning a knife between a first proximal position and a second distal position to sever the first portion of the buttress material from a second portion of the buttress material which is not secured to the body tissue, 60 the second portion of the buttress material remaining secured to the support member. In another embodiment, the support member is disposed radially inward of the cartridge assembly with the knife disposed therebetween and the step of transitioning the knife includes the step of the knife severing the 65 buttress material extending between the cartridge assembly and the support member. In another embodiment, the second

portion of the buttress material is a plurality of attachment members extending from the first portion of the buttress material to the support member and the step of transitioning the knife includes the step of the knife severing the plurality of attachment members from the first portion of the buttress material.

BRIEF DESCRIPTION OF DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and, together with a general description of the disclosure given above and the detailed description of the embodiments given below, serve to explain the principles of the disclosure, wherein:

FIG. 1 is a perspective view of an exemplary annular surgical stapling device according to the present disclosure;

FIG. 2 is a perspective view of a buttress material in accordance with an embodiment of the present disclosure, for use with the annular surgical stapling device of FIG. 1;

FIG. 3 is an enlarged perspective view of an anvil assembly and a tubular body portion of the annular surgical stapling

FIG. 4 is a top, plan view of the tubular body portion of buttress material is supported by the elongate member and 25 FIG. 3, illustrating the support members of an embodiment of the present disclosure;

> FIG. 5 is a top, plan view of the tubular body portion of FIG. 3, illustrating the buttress material supported on the support members;

FIG. 6 is a schematic, longitudinal, cross-sectional view of the anvil assembly and tubular body portion of FIG. 3, as taken through 6-6 of FIG. 3, illustrating the buttress material supported on the support members;

FIG. 7 is a schematic, perspective cut-away view of a tubular body portion of an annular surgical stapling device according to another embodiment of the present disclosure;

FIG. 8 is a schematic, longitudinal, cross-sectional view of the annular surgical stapling device of FIG. 7, as taken through 8-8 of FIG. 7;

FIG. 9 is a top, plan view of the tubular body portion of FIG. 7, illustrating a buttress material attached to a central shaft of the tubular body portion;

FIG. 10 is a plan view of a buttress material, according to another embodiment of the present disclosure, for use with an annular surgical stapling device;

FIG. 11 is a top, plan view of the buttress material of FIG. 10, illustrating the buttress material supported on the support members of a tubular body portion of the annular surgical stapling device;

FIG. 12 is a schematic, longitudinal, cross-sectional view of the annular surgical stapling device of FIG. 3, illustrating the buttress material of FIG. 10 supported on the support members of the tubular body portion with tissue disposed between the buttress material and the anvil assembly of the annular surgical stapling device; and

FIG. 13 is a perspective view of the intestinal area of a patient, illustrating a method of positioning the annular surgical stapling device of FIG. 1 to connect the anvil assembly to the tubular body portion.

DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the presently disclosed annular surgical stapling device will now be described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. As used herein and as is traditional, the term "distal" refers to that portion which is

furthest from the user while the term "proximal" refers to that portion which is closest to the user.

Referring initially to FIG. 1, an annular surgical stapling device for use with a buttress material is disclosed herein and is generally designated as 10. Surgical stapling device 10 5 includes a handle assembly 12 having at least one pivotable actuating handle member 14, and an advancing member 16. Extending from handle member 12, there is provided a tubular body portion 100 which may be constructed so as to have a curved shape along its length. Body portion 100 terminates 10 in a staple cartridge assembly 102 which includes at least one annular array of staple receiving slots 104 having a staple (not shown) disposed in each one of staple receiving slots 104. For example, staple cartridge assembly may include one, two, or more than two annular arrays of staple receiving slots 104.

Staple cartridge assembly 102 may be fixedly connected to the distal end of tubular body portion 100 or may be configured to concentrically fit within the distal end of tubular body portion 100. Typically, staple cartridge assembly 102 includes a staple pusher (not shown) including a proximal 20 portion having a generally frusto-conical shape and a distal portion defining two concentric rings of peripherally spaced fingers (not shown), each one of which is received within one of the respective staple receiving slots 104.

Typically, a knife (not shown), substantially in the form of 25 an open cup with the rim thereof defining a knife edge, is disposed within staple cartridge assembly 102 and mounted to a distal surface of a staple pusher (not shown). The knife edge is disposed radially inward of the pair of annular arrays of staples. Accordingly, in use, as the staple pusher is 30 advanced, the knife is also advanced axially outward.

Positioned distally of staple cartridge assembly 102 there is provided an anvil assembly 200 including an anvil member 202 and a shaft 204 operatively associated therewith for removably connecting anvil assembly 200 to a distal end 35 portion of stapling device 10.

Reference may be made to U.S. Pat. No. 5,915,616 to Viola et al., the entire contents of which are incorporated herein by reference, for a detailed discussion of the construction and operation of annular stapling device 10. U.S. Pat. No. 5,915, 40 616 to Viola et al. is hereby incorporated by reference herein, in its entirety.

Referring now to FIGS. 1, 3, 4, 5 and 6, body portion 100 of stapling device 10 includes a plurality of support members 108 extending from a central shaft 110. One or more support 45 members 108 are adapted to support and secure a buttress material 300 adjacent to or proximate to a tissue contacting surface 106 of staple cartridge assembly 102. As seen in FIG. 6, each support member 108 includes a base portion 112 extending radially outward from a proximal portion 114 of 50 central shaft 110 and an attachment portion 116 extending distally from base portion 112. It is contemplated that each base portion 112 may alternatively extend from central shaft 110 at any position along its length up to and including a distal end 118 of central shaft 110, where, for example, each base 55 portion 112 may extend from central shaft 110 at a middle portion 120 or at distal end 118. It is also contemplated that each support member 108 may extend directly from tubular body portion 100 rather than central shaft 110.

It is contemplated that each attachment portion 116 may be 60 radially spaced from central portion 110 or may be adjacent to or abutting central portion 110 where no base portion 112 would be necessary. Any number of support members 108 may be provided at various positions radially about central portion 110, such as, for example, one, two, four or more 65 support members 108. Support members 108 may be positioned radially about central shaft 110 in any configuration

6

where, for example, each support member may be offset by ninety degrees (See FIGS. 4 and 5) or may be offset by more degrees or less degrees as desired. It is also contemplated that the offset between a first adjacent pair of support members 108 may be greater or less than the offset between a second adjacent pair of support members 108. As seen in FIGS. 4 and 5, attachment portions 116 of each support member 108 may be positioned at a different spacing from central portion 110 and multiple support members 108 having attachment portions 116 with different spacing from central portion 110 may be included at the same time.

Base portions 112 of support members 108 may define a linear shape or may instead define an arcuate shape where, for example, a portion of base portions 112 curve distally away from central portion 110.

Each support member 108 may define a transverse crosssection having a substantially square shape or may define a transverse cross-section having a circular, oval, rectangular, triangular, polygonal or other shape suitable for supporting a buttress material 300 on a distal end 122 of the support member 108. It is contemplated that the transverse cross-section of base portion 112 and attachment portion 116 of each support member 108 may be substantially the same or that the base portion 112 and attachment portion 116 may have different transverse cross-sections.

Distal end 122 of each support member 108 may permanently or removably secure buttress material 300 in place and buttress material 300 may be attached to distal end 122 of each support member 108 by various methods including, for example, adhesives, ultrasonic welding, tacking, stapling, hook and loop, or other methods of attachment which are suitable to either permanently affix or removably affix buttress material 300 to each support member 108.

As seen in FIG. 6, distal end 122 of each support member 108 may be positioned between central shaft 110 and knife 103 and at the same radial plane as tissue contacting surface 106 of staple cartridge assembly 102 relative to central shaft 110 where, when buttress material 300 is affixed or attached to support member 108, buttress material 300 defines a substantially linear radial configuration between support 108 and tissue contacting surface 106 of staple cartridge assembly 102. It is also contemplated that distal end 122 of each support member 108 may be located longitudinally proximal or distal of tissue contacting surface 106 of staple cartridge assembly 102.

Referring now temporarily to FIG. 2, buttress material 300 is generally annular in shape and includes an inner portion 302, a middle portion 304, and an outer portion 306. A substantially centrally located aperture 308, defined by the inner circumference of inner portion 302 is formed through buttress material 300. Buttress material 300 may be any shape sufficient to provide support for anastomosis of tissue after surgical stapling device 10 has been fired including, for example, a square, a circle, an oval, a triangle or any other polygonal or other shape.

In one embodiment, as seen in FIG. 6, buttress material 300 is sized such that when buttress material 300 is affixed or attached to support members 108, outer portion 306 of buttress material 300 extends radially beyond staple receiving slots 104 (See FIGS. 3-5) of staple cartridge assembly 102. Additionally, aperture 308 of buttress material 300 is sized to at least receive shaft 204 of anvil assembly 200 therethrough. Aperture 308 of buttress material 300 may also be sized to receive central shaft 110 of tubular body portion 100 therethrough. In another embodiment, the distance between outer portion 306 of buttress material 300 and inner portion 302 of

buttress material 300 is substantially equal to a width of a tissue contacting surface 106 of staple cartridge assembly 102

Each portion **302**, **304**, and **306** of buttress material **300** may be fabricated from surgical grade, biocompatible, nonabsorbable material (i.e. permanent) or absorbable material (i.e. non-permanent) mesh or material desirably impregnated with an adhesive, sealant and/or other medicament. It is also contemplated that each portion may be a composite of both a non-absorbable and an absorbable material. Suitable materials for the fabrication of buttress material **300** and suitable adhesives, sealants, and/or medicaments for impregnation in or application to buttress material **300** may be found, for example, in U.S. Pat. No. **7**,942,890, referenced above. U.S. Pat. No. **7**,942,890 is hereby incorporated by reference 15 herein, in its entirety.

In another embodiment of the present disclosure, as seen in FIGS. 7-9, an annular surgical stapling device 1000 is disclosed including a tubular body portion 1100 which is similar to tubular body portion 100. In this embodiment, a staple 20 cartridge assembly 1102 of tubular body portion 1100 includes a central shaft 1110 having a proximal portion 1114 with a first smaller thickness and a distal portion 1116 with a second larger thickness. For example, central shaft 1110 defines an inner diameter which is substantially the same for 25 both the proximal and distal portions 1114 and 1116 for receiving the shaft 204 of anvil assembly 200. The outer diameter of central shaft 1110 is smaller at the proximal portion 1114 and larger at the distal portion 1116. The difference between the inner and outer diameters defines a platform 30 1120 at a distal end 1118 of central shaft 1110 for supporting buttress material 300.

Central shaft 1110 may transition from the smaller outer diameter to the larger outer diameter gradually along the longitudinal length of central shaft 1110 where, for example, 35 the outer diameter gradually tapers outward from proximal to distal, or central shaft 1110 may transition from the smaller outer diameter to the larger outer diameter by defining an arcuate transition portion 1124, as seen in FIGS. 7 and 8. It is contemplated that central shaft 1110 may have any configuration for transitioning from the smaller outer diameter at the proximal portion 1114 to the larger outer diameter at the distal portion 1116 to increase the thickness of central shaft 1110 at the distal portion 1116 thereof to provide platform 1120, including, for example, a gentle tapered transition, an arcuate 45 transition, or a radial extrusion from proximal portion 1114.

Platform 1120 may define any shape suitable for providing an attachment surface for securing buttress material 300. For example, platform 1120 may be circular, square, rectangular, triangular, oval, starred, spoked, or any other polygonal shape 50 or suitable shape.

As discussed above, buttress material 300 may be attached to platform 1120 through any means of attachment or affixation including, for example, adhesives, ultrasonic welding, tacking, stapling, hook and loop, or other methods of attach- 55 ment which are suitable to either permanently affix or removably affix buttress material 300 to platform 1120. For example, platform 1120 may include attachment points 1122 (See FIG. 9) for receiving and securing buttress material 300 to platform 1120. It is contemplated that support members, as 60 described above, may also be included to assist in supporting and affixing buttress material 300. The attachment methods disclosed in U.S. patent application Ser. No. 13/094,893, filed Apr. 27, 2011, may also be used to attach the buttress material to the support member or platform discussed above. U.S. 65 patent application Ser. No. 13/094,893 is hereby incorporated by reference herein, in its entirety. The buttresses disclosed

8

herein may be made from the materials disclosed in U.S. patent application Ser. No. 13/094,893, filed Apr. 27, 2011. U.S. patent application Ser. No. 13/094,893 is hereby incorporated by reference herein, in its entirety.

In another embodiment of the present disclosure, as seen in FIGS. 10-12, a buttress material 3000 is disclosed which is similar to buttress material 300. Buttress material 3000 includes an inner portion 3002, a middle portion 3004, an outer portion 3006 and defines an aperture 3008 therethrough. In this embodiment, aperture 3008 is substantially larger than central shaft 110 of tubular body portion 100 where, for example, aperture 3008 may have a diameter substantially equal to the inner diameter of staple cartridge assembly 102. It is contemplated that aperture 3008 may also be smaller than the inner diameter of staple cartridge assembly 102.

Buttress material 3000 is configured for positioning adjacent tissue contacting surface 106 of staple cartridge assembly 102 and may define a donut like shape which is substantially equivalent in width to the width of tissue contacting surface 106. It is contemplated that buttress material 3000 may alternatively have a width which is greater than that of tissue contacting surface 106 and that buttress material 300 may extend radially outward past tissue contacting surface 106 and/or radially inward towards support members 108 and central shaft 110.

Buttress material 3000 is securable to support members 108 through the use of a plurality of attachment members 3010 extending from inner portion 3002 into aperture 3008 towards central shaft 110. Attachment members 3010 allow buttress material 3000 to be supported by and attached or affixed to support members 108 with a minimal amount of material. This reduces overall costs for buttress material 3000 and reduces the force necessary to separate attachment members 3010 from the rest of buttress material 3000, during firing by, for example, a knife. Attachment members 3010 may be configured to break away or to be severed from buttress material 3000 after or during firing and may include perforations, shearable sections, or other mechanisms suitable to facilitating the separation of attachment members 3010 from the rest of buttress material 3000.

Attachment members 3010 may be attached or affixed to attachment portion 116 of support members 108 in the same manner as described above with regard to buttress material 300 including, for example, adhesives, ultrasonic welding, tacking, stapling, hook and loop, or other methods of attachment which are suitable to either permanently affix or removably affix attachment members 3010 to support members 108.

Attachment members 3010 may define a rectangular shape or may define other shapes including, for example, triangular, square, semicircular, or other shapes suitable for supporting buttress material 3000 and attaching or affixing buttress material 3000 to support members 108 or platform 1020.

Buttress material 3000 and attachment members 3010 may be made from any of the materials describe above for buttress material 300 and found in U.S. Pat. No. 7,942,890, referenced above. One or more of inner portion 3002, middle portion 3004, outer portion 3006 and attachment members 3010 may be made from the same material or one or more of inner portion 3002, middle portion 3004, outer portion 3006, and attachment members 3010 may be made from different materials.

Turning now to FIGS. 12 and 13, there is illustrated the use of annular surgical stapling device 10 and detachable anvil assembly 200 in an anastomosis procedure to effect joining of intestinal sections 20 and 22. The anastomosis procedure is typically performed using minimally invasive surgical techniques including laparoscopic means and instrumentation. At

the point in the procedure shown in FIG. 13, a diseased intestinal section has been previously removed, anvil assembly 200 has been applied to the operative site either through a surgical incision or transanally and positioned within intestinal section 22, and tubular body portion 100 of annular surgical stapling device 10 has been inserted transanally into intestinal section 20. Intestinal sections 20 and 22 are also shown temporarily secured about their respective components (e.g., shaft 204 of anvil assembly 200, and the tissue contacting surface 106 of tubular body portion 100).

According to one method, as seen in FIGS. 6, 8, 12, and 13, buttress material 300 may be placed onto support members 108 of tubular body portion 100 (or platform 1120 of tubular body portion 1000) prior to the coupling of anvil assembly 200 to the central shaft 110 of tubular body portion 100. Tubular body portion 100 may come with buttress material 300 pre-attached to support members 108 (or platform 1120). Alternatively the surgeon may attach buttress material 300 to support members 108 (or platform 1120) prior to use. With 20 buttress material 300 secured in place, the surgeon maneuvers anvil assembly 200 until the proximal end of shaft 204 is inserted into the central shaft 110 of tubular body portion 100. Central shaft 110 is now engaged to shaft 204 with intestinal sections 20 and 22 disposed between anvil assembly 200 and 25 staple cartridge assembly 102. As seen in FIG. 12, for example, buttress material 300 is disposed between cartridge assembly 102 and intestinal sections 20 and 22.

Anvil assembly 200 and tubular body portion 100 are then approximated to approximate intestinal sections 20, 22 and 30 capture buttress material 300 between intestinal section 20 and tissue contacting surface 106 of staple cartridge assembly 102. Surgical stapling device 10 is then fired to staple buttress material 300 and intestinal sections 20, 22 together and the knife is actuated to cut the portion of tissue and buttress 35 material 300 disposed radially inward of the knife, to complete the anastomosis. For example, the knife may cut through a portion of buttress material 300 and may be aligned with perforations or other shearable sections of buttress material 300 to require less force for cutting. Alternatively when a 40 buttress material 3000, having attachment members 3010 is provided, the knife may cut through a portion of each attachment member 3010 near inner portion 3002 of buttress material 3000 where, for example, less force is required to cut through attachment members 3010 than to cut through but- 45 tress material 300 because less material is provided in the path of the knife.

While the use of surgical stapling device 10 has been shown and described, it is understood and within the scope of the present disclosure that surgical stapling device 1000 may 50 be operated in the same or similar manner.

While several configurations of support members and platforms have been illustrated and described, it will also be
apparent that various modifications can be made without
departing from the spirit and scope of the present disclosure. 55
For example, it is envisioned and within the scope of the
present disclosure for a greater or smaller number of support
members to be provided. It is also envisioned that the spacing
of support members from the central shaft may be adjusted
and that the spacing or circumferential position of the support
members about the central shaft may be adjusted. It is also
envisioned that a thicker or thinner central shaft with a larger
or smaller platform may be provided.

Thus, it should be understood that various changes in form, detail and application of the buttress materials of the present 65 disclosure may be made without departing from the spirit and scope of the present disclosure.

What is claimed is:

1. A surgical stapling device for joining tissue portions, comprising:

10

- a handle assembly;
- a tubular body portion supported on a distal end of the handle assembly, the tubular body portion having a staple cartridge assembly containing a plurality of surgical staples in an annular array, and an elongate member extending axially therefrom and defining a distal surface, the staple cartridge assembly defining an inner annular edge, wherein a gap is defined between the inner annular edge of the staple cartridge assembly and the elongate member:
- an anvil assembly at a distal end of the surgical stapling device, the anvil assembly having a shaft for removably connecting the anvil assembly to the tubular body portion, the anvil assembly and tubular body portion being juxtaposed with respect to one another along the shaft and arranged so as to be approximated with respect to one another:
- a support member extending from the tubular body portion towards the anvil assembly, the support member having a proximal end extending radially outward from the elongate member of the tubular body and a distal end extending distally from the proximal end of the support member, wherein the distal end of the support member is radially located in the gap between the inner annular edge of the staple cartridge assembly and the elongate member, and wherein the distal end of the support member is coplanar with and does not extend beyond a tissue contacting surface, wherein the tissue contacting surface is defined by the staple cartridge assembly; and
- a buttress material supported by the support member and removably attached thereto, wherein the buttress material is disposed between the anvil assembly and the staple cartridge assembly, and wherein the buttress material overlays the annular array of surgical staples and extends radially inward of the distal end of the support member such that the distal end of the support member is entirely overlain by the buttress material.
- 2. A surgical stapling device according to claim 1, wherein the buttress material includes an attachment member extending from the buttress material to the support member, the attachment member being attachable to the support member to removably secure the buttress material to the support member.
- 3. A surgical stapling device according to claim 1, wherein the tubular body portion includes a plurality of support members, the buttress material being removably attachable to the plurality of support members.
- **4**. A surgical stapling device according to claim **1**, wherein the buttress material is positioned proximate to a tissue contacting surface of the staple cartridge assembly when the buttress material is attached to the support member.
- **5**. A surgical stapling device according to claim **1**, wherein the elongate member defines a passage extending at least partially therethrough for reception of the shaft of the anvil assembly.
- **6**. A surgical stapling device according to claim **5**, wherein the tubular body portion further includes a knife disposed between the elongate member and the tubular body portion, the knife actuatable from a first proximal position to a second distal position to sever the tissue portions during firing of the surgical stapling device.
- 7. A surgical stapling device according to claim 6, wherein the support member is radially disposed between the elongate member and the knife.

* * * * *